半導體激光器是目前為止使用最多的光電子器件之一。隨著技術的不斷進步和器件量產化能力的提高,現(xiàn)在能夠應用到更多的領域中。半導體激光器是主要使用半導體材料作為工作物質一種的激光器,因為物質結構的不同,產生的激光也會不同。半導體激光器的特點包括小型化、低功耗、高效率、易集成、可調諧等。此外,它的頻偏和線寬都比較小,輸出波長范圍廣。半導體激光器的尺寸小,泵浦效率高,響應速度快,波長和尺寸與光纖尺寸適配,可直接調制,相干性好。
大功率激光器由于單顆芯片出光功率大,單位面積產生的熱量大,如果不做好散熱技術,很容易發(fā)生芯片死亡,性能快速下降。
激光器散熱方法分類
目前激光器主要的散熱方法分為傳統(tǒng)散熱方法和新型散熱方法,傳統(tǒng)散熱方法包括:風冷散熱、半導體制冷散熱、自然對流散熱等,新型散熱方法包括:倒裝散熱、微通道散熱。
半導體激光器的散熱結構及傳熱過程
半導體激光器封裝時的散熱機構主要由激光芯片、焊接層、熱沉、金屬層等組成。半導體激光器散熱結構里面的焊接層主要是用焊接的方法把芯片和熱沉連接在一起。高功率半導體激光器在進行使用的時候為了達到降低熱阻的目的,經(jīng)常在焊接的時候使用一些熱導率比較高的材料,比如金錫焊料。在整個封裝過程進行的時候會出現(xiàn)很多層次,這些層次主要包括:芯片、焊料層、熱沉、金屬層,利用熱沉和金屬層的傳熱效果把激光芯片的熱能傳導出去,最終使半導體激光器形成良好的散熱,以延長激光器的使用壽命。
散熱性能分析時需要注意的事項
高功率半導體激光器散熱的性能主要由熱阻和熱通來進行評價,在評價的時候需要注意考慮限定溫度下的熱通量。如果在進行散熱分析的時候發(fā)現(xiàn)兩者之間溫差比較大,激光芯片表面就會出現(xiàn)結露現(xiàn)象,出現(xiàn)此問題后,除了影響光輸出功率,還會影響對波長的鎖定,甚至還會因為結露問題損壞電路的光電性能,最終影響可靠性。目前常見的降低熱阻的方法就是使用熱導率材料,熱導率材料的出現(xiàn)給激光器降低溫度提供了更多的優(yōu)化空間。
傳統(tǒng)散熱方法
1.自然對流熱沉冷卻散熱方法
自然對流熱沉冷卻散熱就是利用一些熱導率高的材料把產生出來的熱量帶走,之后再通過自然對流的方式散發(fā)熱量??萍既藛T在研究的時候還發(fā)現(xiàn)翅片也可以幫助散熱,并且在散熱的時候能夠使散熱系統(tǒng)里面的傳熱率達到最大的數(shù)值。當溫度相同的時候翅片間距就會隨著翅片高度的增加而降低。在使用基板豎直放置熱沉的時候需要適當增加高度,通過增加高度提高散熱效果,這樣的散熱方式在使用的時候會降低很多的成本。在實際工作的時候經(jīng)常會使用銅或者氮化鋁作為熱沉,但熱沉的方式還不能完全滿足高功率半導體激光器的散熱需要。
2.半導體制冷散熱(電制冷散熱)方法
半導體制冷散熱方法最主要特點就是體積小、可靠性強。半導體制冷散熱方法經(jīng)常會出現(xiàn)在高功率的半導體激光器中,因為加入了TEC制冷,封裝的尺寸相應提高,封裝的費用也相應上漲,在使用的時候把半導體芯片的冷端和熱沉連接在一起,熱端再通過對流的方式和TEC自身的熱量散發(fā)出去,圖2是TEC工作結構圖。
通過調整TEC內部參數(shù)就可以提高TEC的控冷效果??蒲腥藛T在研究的時候發(fā)現(xiàn)具有最佳的傳熱面積比值能夠讓TEC特性系數(shù)達到最大值。在研究的時候還發(fā)現(xiàn)傳熱面積的比值和TEC材料的特性還有交換面積都有非常大的關系。
3.大通道水冷散熱方法
要想降低熱沉的溫度就需要在熱沉中構建一個通道,要想達到降溫的效果就需要在這個通道里面加入一定的水源,這樣就不會耽誤激光器的工作。針對這一點,科研人員在研究的時候發(fā)現(xiàn),擾流結構的散熱效果會比傳統(tǒng)的空腔結構好,但是通道里面也會出現(xiàn)壓力增加的情況發(fā)生。研究發(fā)現(xiàn),雖然大通道使用非常廣泛,但因為激光器輸出功率不斷提高,現(xiàn)在大通道水冷散熱也已經(jīng)不能滿足高功率半導體激光器的散熱需求。
新型散熱方法
隨著各領域對激光器的要求越來越高,傳統(tǒng)的散熱方法已經(jīng)不能滿足現(xiàn)在的要求,需要研究更多新型的散熱方式。目前出現(xiàn)的新型散熱方式有以下幾種。
4.倒裝貼片方法
圖3為倒裝貼片圖。倒裝貼片封裝仍采用TEC方式,傳統(tǒng)的貼激光器芯片和熱沉貼片方式采取芯片正面朝上,背面冷卻面和熱沉通過焊料相連接,但芯片有源區(qū)發(fā)熱量主要是集中在上表面幾個微米的區(qū)域發(fā)熱,上表面和下表面的一般有上百微米的距離,熱量通過這么長距離的傳導到熱沉,再到TEC制冷,散熱效果有限。
通過對芯片的內部結構進行改進,調整芯片表面結構和有源區(qū)發(fā)熱層,研究采用芯片倒裝貼片技術,使芯片的主要發(fā)熱面通過焊接層后直接和熱沉相接,激光器散熱可以提高20%或者更高的散熱效率;因為光芯片的性能和溫度強相關,溫度越高,波長漂移越厲害,光輸出功率也會隨之下降或者飽和,通過倒裝貼裝方式可以大幅度提高散熱效果,芯片的光電輸出更加穩(wěn)定,整個激光器的性能也得到大幅度提高,最終性能需要達到國軍標GR-468-CORE的性能要求,部分指標見表1。
5.微通道散熱方法
微通道散熱主要有兩種方式:根據(jù)通道大小定義的微通道;根據(jù)表面張力影響定義的微通道。圖4是典型的微通道熱沉冷卻結構圖。
科研人員在研究的時候用微通道做冷卻裝置做了一次實驗,通過實驗發(fā)現(xiàn)了微通道的散熱特性,微通道熱沉能夠散熱的原因就是有一定的高熱通量。同時研究也發(fā)現(xiàn)了微通道會對散熱效果更好。此外還有人在研究的時候發(fā)現(xiàn)微通道熱沉不同的溝槽形狀也會影響散熱效果。經(jīng)過無數(shù)人的研究發(fā)現(xiàn)余弦型通道的散熱特征是所有形狀中最好的。此外科研人員還發(fā)現(xiàn)微通道和玻璃微管道結合的冷卻裝置能夠滿足大功率半導體激光器的散熱要求。
激光器在使用的時候會應用到微通道,是因為微通道會比傳統(tǒng)散熱方式的散熱效果更好,能夠滿足現(xiàn)在高功率激光器的散熱要求。但是微通道在使用的時候有一個缺點,就是經(jīng)常會因為熱形變冷卻介質顆粒導致微通道堵塞,影響散熱效果,所以需要用納米流體提高整個過程的換熱性能。
6.噴霧冷卻散熱方法
噴霧冷卻是通過壓力的幫助,把冷卻液用霧化的方式噴到傳熱的表面,達到冷卻的目的。噴霧冷卻主要的特點就是傳熱系數(shù)大、冷卻液流量低??蒲腥藛T發(fā)現(xiàn)用水當介質,使用實心圓錐噴嘴進行實驗時,微結構的表面能夠增加熱交換的效果。在研究的時候發(fā)現(xiàn)噴霧冷卻的冷卻性和噴霧流速有關。此外,科研人員還發(fā)現(xiàn)了一種噴霧相變冷卻器,在實驗時噴霧冷卻裝置中的噴嘴高度和散熱效果也有非常密切的關系。
奧萊光電直接半導體激光系統(tǒng)采用的就是976半導體激光器,根據(jù)功率的不同有恒溫風冷(10W、40W、60W、100W)和恒溫水冷(200W、500W)兩種半導體激光器可選。主要應用于激光錫焊,表面熱處理,熔覆高功率半導體激光器泵浦源。主要優(yōu)勢有:激光加工恒溫控制;PID算法不易燒毀焊點;自整定控制,可內建焊接模型;內循環(huán)水冷;在線實時功率檢測。特別是在低溫焊接領域極其適用。
以上就是武漢奧萊光電關于 大功率半導體激光器的幾種散熱方法的具體內容,如果還有疑問,歡迎來電或加微信詳詢,我們?yōu)槟掷m(xù)更新更多相關說明,您可以關注我們網(wǎng)站了解更多資訊。
?Copyright © 2024 Oraylaser.com. All rights reserved. ICP備:鄂ICP備13011549號 copyrighted.
武漢奧萊光電科技有限公司 專注于振鏡同軸視覺光路系統(tǒng),光纖精密切割頭,單聚焦恒溫錫焊焊接頭,光斑可調節(jié)焊接頭,方形光斑焊接頭,塑料焊接等激光產品的生產銷售及提供激光錫焊塑料焊應用解決方案。